Recitation 7 - \mathcal{R} vs. \mathcal{RE}

Orit Moskovich
Gal Rotem

Tel Aviv University

December 2, 2015
Overview

1. R, RE and $co-RE$

2. Closure Properties

3. Diagonalization
Accept vs. Decide

Definition 1
A TM M accepts a language L if:
1. $w \in L$, then M enters q_{accept}
2. $w \notin L$, then M can either enter q_{reject} or loop

Definition 2
A TM M decides a language L if:
1. $w \in L$, then M enters q_{accept}
2. $w \notin L$, then M enters q_{reject}
Definition 3

\mathcal{RE} - the class of enumerable languages, i.e.

\[\forall L \in \mathcal{RE}. \exists M. M \text{ accepts } L \]

Definition 4

\mathcal{R} - the class of decidable languages, i.e.

\[\forall L \in \mathcal{R}. \exists M. M \text{ decides } L \]

Definition 5

$\text{co} - \mathcal{RE}$ - the class of of languages whose complement is enumerable, i.e.

\[\forall L \in \text{co} - \mathcal{RE}. \exists M. M \text{ accepts } \overline{L} \]
The Acceptance Problem

Theorem 6

A language is decidable \iff it is Turing-recognizable and co-Turing-recognizable

i.e.,

$$\mathcal{R} = \mathcal{RE} \cap \text{co-RE}$$

Theorem 7

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \notin \mathcal{R}$$

Corollary 8

$$\overline{A_{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ doesn’t accept } w \} \notin \mathcal{RE}$$
Warm Up

Theorem 9

Every CFL is decidable

Proof.

Let \(L \) be a CFL.

Goal: Build a TM that decides \(L \).

First try: Convert a PDA for \(L \) into a TM (how?)

Why is that a bad idea? If the PDA is non-deterministic, then some branches of the PDA’s computation might never halt. Thus, in such case, the simulating TM will also loop.

Second (and better) try: Let \(G \) be a CFG for \(L \). Design a TM \(M_G \) that decides \(L \) as follows:
Proof.

Define $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG and } G \text{ generates } w \}$.

Recall, we already built an algorithm that on input CFG G and input word w, outputs accept if $G \Rightarrow^* w$, and reject otherwise.

Thus, $A_{CFG} \in \mathcal{R}$. Denote by S_1 the TM deciding A_{CFG}.

Pseudocode M_G

On input w

1. Run S_1 on $\langle G, w \rangle$
2. If S_1 accepts, accept; If S_1 rejects, reject

Thus, M_G is a deciding TM for L.

Orit Moskovich and Gal Rotem (TAU)
Example 10

Show that \mathcal{R} is closed under \oplus operation.
i.e., if $L_1, L_2 \in \mathcal{R}$, then

$$L_1 \oplus L_2 = \{ w \mid w \in L_1 \setminus L_2 \text{ or } w \in L_2 \setminus L_1 \} \in \mathcal{R}$$

Proof #1 - Using closure properties.

Let $L_1, L_2 \in \mathcal{R}$.
Then, $L_1 \oplus L_2 = (L_1 \setminus L_2) \cup (L_2 \setminus L_1) = (L_1 \cap \overline{L_2}) \cup (L_2 \cap \overline{L_1})$.

Since \mathcal{R} is closed under complement,
$$\overline{L_1}, \overline{L_2} \in \mathcal{R}$$

Since \mathcal{R} is closed under intersection and union,
$$(L_1 \cap \overline{L_2}) \cup (L_2 \cap \overline{L_1}) \in \mathcal{R}$$
Example - Closure Under \oplus Operation

Proof #2 - Direct construction.

Let $L_1, L_2 \in \mathcal{R}$. Therefore, there exist TMs M_1, M_2 that decide L_1, L_2, respectively.

We build a TM M_\oplus that decides $L_1 \oplus L_2$ as follows:

Pseudocode M_\oplus

On input w

1. Run M_1 on w
2. Run M_2 on w
3. If M_1 accepts and M_2 rejects, accept;
 If M_1 rejects and M_2 accepts, accept;
 Otherwise, reject

Note: M_\oplus actually returns $M_1(w) \oplus M_2(w)$.
Example

Example 11

Let \(\textit{EVEN}_{DFA} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ contains a word of even length} \} \)

Prove that \(\textit{EVEN}_{DFA} \) is decidable

Reminder

Define \(\textit{E}_{DFA} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) = \emptyset \} \).

Then, \(\textit{E}_{DFA} \in \mathcal{R} \).
Proof.
Denote by S_2 the TM deciding E_{DFA}.
We build a TM M_{even} that decides $EVEN_{DFA}$ as follows:

Pseudocode M_{even} deciding $EVEN_{DFA}$

On input $\langle D \rangle$
1. Construct a DFA D_{even} for $(00 \cup 01 \cup 10 \cup 11)^*$ (how?)
2. Construct a DFA D' of $D \cap D_{even}$ (how?)
3. Run S_2 on $\langle D' \rangle$
4. If S_2 accepts, reject; If S_2 rejects, accept

Correctness
$L(D)$ contains a word of even length $\iff L(D \cap D_{even}) \neq \emptyset$
Example

Example 12

Let $\text{INF_EVEN}_{DFA} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ contains infinite number of even-length strings} \}$

Prove that INF_EVEN_{DFA} is decidable

Reminder

Define $\text{INF}_{DFA} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is infinite} \}$. Then, $\text{INF}_{DFA} \in \mathcal{R}$.
Example

Proof.

Denote by S_3 the TM deciding INF_{DFA}.

We build a TM $M_{\text{inf_even}}$ that decides INF_EVEN_{DFA} as follows:

Pseudocode $M_{\text{inf_even}}$ deciding INF_EVEN_{DFA}

On input $\langle D \rangle$

1. Construct a DFA D_{even} for $(00 \cup 01 \cup 10 \cup 11)^*$
2. Construct a DFA D' of $D \cap D_{\text{even}}$
3. Run S_3 on $\langle D' \rangle$
4. If S_3 accepts, accept; If S_3 rejects, reject

Correctness

$L(D)$ contains infinite number of even-length strings $\iff L(D \cap D_{\text{even}})$ is infinite
Example 13

Show that for every infinite language L, there exists a sub-language L' of L that is not Turing-recognizable (specifically, L' is undecidable)

Proof.

We prove the claim using counting arguments:

- We saw in class that the set of all Turing machines is **countable**
- Let L' be the set of all sub-languages of L
- Thus, we aim to show that L' is **uncountable**

$L = \{ \varepsilon, 0, 01, 10, 000, \ldots \}$

$L \supseteq L' = \{ 0, 01, 000, \ldots \}$

$\chi_{L'} = 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ \ldots$

We found a correspondence between L' and B (the set of all infinite binary sequences), which is an uncountable set.
Example

Example 14
Show that there exists an infinite language L, such that every infinite sub-language L' of L is undecidable

Proof.

Goal: To construct a language L such that for every infinite decidable language A, $A \not\subseteq L$.

We will use diagonalization to prove the claim.
Example

Proof (Cont.)

Let \mathcal{D} be the set of infinite decidable languages. Thus, \mathcal{D} is countable.

Let L_1, L_2, \ldots be a list of all infinite decidable languages.

We define a sequence of integers n_0, n_1, \ldots as follows:

1. $n_0 = 0$
2. Let w_k be the shortest string in L_k such that $n_{k-1} < |w_k|$ (why is that a correct definition?)
3. Define $n_k = |w_k| + 1$ (thus, $n_{k-1} < |w_k| < n_k$)

Now, define $L = \{1^{n_1}, 1^{n_2}, \ldots \}$.
Proof (Cont.)

Recall, \(L = \{1^{n_0}, 1^{n_1}, 1^{n_2}, \ldots\} \), where \(\forall k. \ n_{k-1} < |w_k| < n_k \). Also, \(L_1, L_2, \ldots \) is the list of all infinite decidable languages.

Claim: Every infinite decidable language \(A, A \not\subseteq L \).

Proof: Suppose for contradiction that there exists an infinite decidable subset of \(L \), i.e., \(\exists i. L_i \subseteq L \).

Examine \(w_i \) defined in previous slide:

- \(w_i \in L_i \)
- \(n_{i-1} < |w_i| < n_i \implies w_i \notin L \)

Contradiction.
Example 15

Prove:

A is Turing recognizable \iff there exists some decidable language B such that $A = \{ x \mid \exists w \in \Sigma^*. \langle x, w \rangle \in B \}$

1. Let B be a decidable language such that $A = \{ x \mid \exists w \in \Sigma^*. \langle x, w \rangle \in B \}$. Denote by M_B the TM deciding B.

We build a TM M that accepts A:

Pseudocode M accepting A

On input x

1. For every $w \in \Sigma^*$:
2. Run M_B on $\langle x, w \rangle$
3. If M_B accepts, accept
Let M be a TM that accepts A.

Define $B = \{ \langle x, 1^t \rangle \mid M \text{ accepts } x \text{ within } t \text{ steps} \}$.

Claim: B is a decidable language such that

$$A = \{ x \mid \exists w \in \Sigma^*. \langle x, w \rangle \in B \}$$

Proof:

- B is clearly decidable (why?)
- $x \in A \iff \exists t \in \mathbb{N}. M \text{ accepts } x \text{ within } t \text{ steps}$. Thus, exists w such that $\langle x, w \rangle \in B$ ($w = 1^t$).

Therefore, $A = \{ x \mid \exists w \in \Sigma^*. \langle x, w \rangle \in B \}$
Example

Example 16
Let $UL_{DFA} = \{ \langle D, q \rangle \mid D \text{ is a DFA and } q \text{ is a useless state} \}$
Where state q in DFA D is useless if it is never entered on any input.
Prove that UL_{DFA} is decidable

Reminder
Define $E_{DFA} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) = \emptyset \}$. Then, $E_{DFA} \in \mathcal{R}$.
Proof.

Denote by S_2 the TM deciding E_{DFA}.

We build a TM M_{ul} that decides UL_{DFA} as follows:

Pseudocode M_{ul} deciding UL_{DFA}

On input $\langle D, q \rangle$

1. Construct a DFA D' that is identical to D, except that q is the only accept state
2. Run S_2 on $\langle D' \rangle$
3. If S_2 accepts, accepts; If S_2 rejects, rejects
Example

Correctness

- $\langle D, q \rangle \in UL_{DFA}$:
 Then, by definition, for all $w \in \Sigma^*$, D on w doesn’t reach q. Therefore, for all $w \in \Sigma^*$, D' on w doesn’t reach q, and thus $L(D') = \emptyset$.

- $\langle D, q \rangle \notin UL_{DFA}$...

Orit Moskovich and Gal Rotem (TAU)
Don’t forget the quiz...

Oh, crap! Was that TODAY?

Good Luck!